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Abstract

Traditional, persistent data-oriented approaches in computer forensics face some
limitations regarding a number of technological developments, e.g., rapidly in-
creasing storage capabilities of hard drives, memory-resident malicious software
applications, or the growing use of encryption routines, that make an in-time in-
vestigation more and more difficult. In order to cope with these issues, security
professionals have started to examine alternative data sources and emphasize
the value of volatile system information in RAM more recently. In this paper, we
give an overview of the prevailing techniques and methods to collect and analyze
a computer’s memory. We describe the characteristics, benefits, and drawbacks
of the individual solutions and outline opportunities for future research in this
evolving field of IT security.

Keywords: memory forensics, memory acquisition, memory analysis, live
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1. Introduction

With the widespread use of computer systems and network architectures,
digital cyber crime has, unfortunately, aggravated as well. According to a re-
cent publication by the Internet Crime Complaint Center (2010), a partnership
between the National White Collar Crime Center (NW3C) and the Federal Bu-
reau of Investigation (FBI), the number of complaints filed to the institution has
almost gone up by the factor 20 within less than a decade. In 2009, more than
336,000 reports about different types of illicit activity such as online fraud, iden-
tity theft, and economic espionage were registered. The yearly monetary loss of
complaints referred to law enforcement was estimated to be nearly $560 million.
As a survey by the Computer Security Institute (2009) shows, companies may
lose up to several hundred thousand dollars in the course of an incident. In
such cases, a forensic investigation of the affected machines may prove helpful
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for reconstructing the actions that led to the security breach, finding relevant
pieces of evidence, and possibly taking legal actions against the adversary.

Traditional approaches in computer forensics mostly described the acqui-
sition and analysis of persistent system data. Respected procedures usually
involved powering off the suspect machine, creating an exact bit-by-bit im-
age of the corresponding hard disks and other storage media, and performing a
postmortem examination of the collected information (U.S. Secret Service, 2006;
U.S. Department of Justice, 2008). Obtaining a copy of physical Random Access
Memory (RAM) was, on the other hand, frequently neglected by first responders
(Shipley and Reeve, 2006; Hoglund, 2008), even though guidelines stressed the
necessity of securing digital evidence with regard to the order of volatility, i.e.,
from the volatile to the less volatile, as early as in 2002 (Brezinski and Killalea,
2002; Casey, 2004; Farmer and Venema, 2005). In the face of ever-growing hard
drive storage capabilities (Oswald, 2010), and correspondingly, tremendous ef-
forts to analyze media in time (Mrdovic et al., 2009; Walters and Petroni, 2007;
Shipley and Reeve, 2006) as well as a rising number of memory-resident mali-
cious software applications (Moore et al., 2003; Rapid7 LLC, 2004; Sparks and
Butler, 2005; Bilby, 2006), the restoration of transient and system state-specific
information has, however, also moved more gradually into the focus of current
research, beginning with the Digital Forensic Research Workgroup (DFRWS)
challenge in 2005 (DFRWS, 2005).

This shift in practices has been driven and inspired by several other develop-
ments, too: First, “pulling the plug” on a company server may negatively affect
productivity in certain cases and cause substantial losses due to unexpected
down times. Furthermore, depending on the configuration of the system, file
system journals may be damaged during the shutdown process, or the machine
may be difficult to restart. Thus, there is a demand to minimize interferences
with existing business and enterprise processes. Second, some programs are ex-
plicitly designed to make no or preferably as little persistent changes as possible
on the hard disk of the user. Contemporary examples for this type of software
are the Mozilla Firefox web browser with its private browsing capability (see
Mozilla Foundation, 2008; Aggarwal et al., 2010) or utilities included in the
PortableApps.com project (Rare Ideas, 2010). For this reason, forensic analysts
must adapt their strategies and also search in volatile system storages for traces
and data remnants, including usernames, passwords, and text fragments. More-
over, many modern operating systems include support for file or even full disk
encryption (Microsoft Corporation, 2009; Apple Inc., 2010; Saout, 2006). Simi-
lar functions are provided by freely available open source tools, e.g., TrueCrypt
(TrueCrypt Foundation, 2010), or commercial products such as SafeGuard Easy
(Sophos Plc, 2010) or PGP (PGP Corporation, 2010). Because of the transpar-
ent design and ease of use of these software products, security professionals are
likely to face an increasing number of encrypted drives that make traditional
investigations infeasible (Getgen, 2009). Restoring a cryptographic key from
memory might be the only possibility to get access to the protected data area in
this case. The same holds true for packed malicious binaries. Malware writers
typically employ compression, armoring, and obfuscation techniques to make



reverse engineering and static analysis of their code more difficult (Sharif et al.,
2009; Rolles, 2009; Brosch and Morgenstern, 2006; Young and Yung, 2004).
Memory inspection is a viable solution to cope with these issues and extract the
unpacked and decrypted executable directly from RAM.

As can be seen, a myriad of valuable information is stored in volatile memory
that is usually lost when the target computer is powered off. Failing to preserve
its contents may thus destroy a significant amount of evidence.

Motivation for this Paper. Over the last 5 1/2 years, considerable research has
been conducted in the field of memory forensics, and various methods have been
published for capturing and examining the volatile storage of a target machine.
However, many techniques solely apply to specific versions of operating systems
and architectures or only work under certain conditions. Moreover, depending
on the technology used, the reliability and trustworthiness of generated results
may vary. For these reasons, security professionals must have a thorough under-
standing of the capabilities and limitations of the respective solutions in order
to successfully retrieve pieces of evidence and complete a case. A complete de-
scription of the current state of the art appears to be missing at the time of
this writing though, restricting (research) activities in this area to a number of
renowned experts.

In this paper, we give a comprehensive and structural overview of proven
approaches for obtaining and inspecting a computer’s memory. We explain the
technical foundation of existing tools and methodologies and outline their indi-
vidual strengths and weaknesses. Based on these illustrations, security analysts
and first responders may choose an adequate acquisition and analysis strategy.
In addition, we give an extensive summary of the relevant literature. This review
serves as a good starting point for own future studies.

Please note that our explanations refer to the product family of Microsoft
Windows operating systems. We assume that due to their high popularity and
dominant market position (Net Applications, 2010), investigators are particu-
larly likely to face Windows-based machines in practice. In addition, as we will
see, a deep knowledge of internal system structures is required to collect dig-
ital evidence from a volatile storage. Covering other platforms such as Linux
or Mac OS is therefore out of the scope of this paper. Interested readers are
referred to Movall et al. (2005) and Suiche (2010) for more information on these
topics.

Outline of the Paper. This paper is outlined as follows: In Section 2, we briefly
describe the memory management process and give an overview of the most
important data structures that are required for this task. Current techniques
and methods for creating a memory image from the target system are presented
in Section 3, followed by a detailed illustration of the different investigative
procedures in Section 4. A special framework for memory analysis activities,
Volatility, is subject of Section 5. We conclude with a summary of our work and
indicate opportunities for future research in this area in Section 6.
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Figure 1: Mapping Virtual to Physical Memory
(Source: Based on Russinovich et al., 2009, p. 15)

2. Technical Background

Modern multi-tasking operating systems typically do not access physical
memory directly, but rather operate on an abstraction called wvirtual memory.
This abstraction of physical RAM needs specific hardware support (the so-called
Memory Manager or Memory Management Unit) and offers several inherent
advantages, e.g., the possibility of providing each process with its own protected
view on system memory as well as monitoring and restricting read and write
activities with the help of privilege rules (Intel Corporation, 2011). The layout
between the virtual and physical address space may differ though, and blocks
of virtual memory do not necessarily map to contiguous physical addresses as
illustrated in Figure 1.

2.1. Memory Address Space Layout

On Microsoft Windows operating systems, each process has its own private
virtual address space that is non-accessible to other running applications un-
less portions of memory are explicitly shared. Thereby, collisions and privilege
violations between different executables are prevented.

A 32-bit x86 user process is equipped with 2 GB of virtual memory by default
(Russinovich et al., 2009). The other half of the address space (0x80000000
to FFFFFFFF) is reserved for system usage.! Kernel space is shared between
and available to all system components. Thus, as Russinovich et al. (2009,
p. 17) argue, it is vital that kernel-mode applications “be carefully designed
and tested to ensure that they don’t violate system security and cause system
instability”. Critical memory regions include, for example, the system pools that
store volatile data that must not/may be paged out to hard disk as well as the

LFor reasons of simplicity, we assume that advanced memory management features such as
large address spaces, Address Windowing Extension (AWE), and Physical Address Extension
(PAE) are turned off. For more information on these concepts as well as details about the
64-bit address space layout, please refer to Russinovich et al. (2009).
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Figure 2: Virtual Address Space Layout
(Source: Based on Russinovich et al., 2009, p. 677)

process page tables that are required for virtual-to-physical address translation
as we will see in the following section (see also Figure 2).

2.2. Virtual Address Translation

As we have already explained, programs usually operate on virtual memory
regions only. Therefore, to manipulate the respective physical data, the Memory
Manager must continuously translate (map) virtual into physical addresses. This
procedure works as follows (Intel Corporation, 2011; Russinovich et al., 2009):
At the hardware level, volatile storage is organized into units called pages. A
common size of such pages is 4 KB on x86-platforms. To reference a page,
the operating system implements a two-level approach: For every process, the
operating system maintains a page directory that saves pointers (Page Directory
Entries, PDEs, 4 bytes each, containing a pointer and several flags) to 1,024
different page tables. Page tables, in turn, contain up to 1,024 links (Page Table
Entries, PTEs, 4 bytes each) to the corresponding page in main memory. Thus,
in order to translate a virtual to a physical address, the Memory Manager first
needs to recover the base address of the page directory. It is stored in the CR3
register of the processor and reloaded from the kernel process (_KPROCESS) block
of the executable at every context switch. The first 10 bits of the virtual address
can then be used as an index into the page directory to retrieve the desired PDE.
With the help of the PDE and the page table indez, i.e., the subsequent 10 bits
of the virtual address, the page table and PTE in question are identified in the
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Figure 3: Virtual to Physical Address Translation
(Source: Russinovich et al., 2009, p. 699)

next step. To find the appropriate page and data in RAM eventually, the PTE
and the 12-bit byte index of the virtual address are parsed. A summary of the
entire process is presented in Figure 3.

2.3. Paging

With respect to the address translation sequence outlined in the previous
section, we have implicitly assumed that the requested information is always
available in main memory. However, in some cases, the total amount of virtual
memory that is consumed by running processes is larger than the size of the
entire physical storage. To cope with these scenarios, the operating system
needs to temporarily swap out (page) memory contents to hard disk in order to
free required space. When a thread attempts to operate on a swapped-out page,
the memory management unit generates page fault interrupt that is handled by
the operating system such that the requested information can be transferred
back into RAM.

Whether or not a virtual address has been paged to disk is indicated by the
Valid flag, the least significant bit, of a PDE or PTE. When it is set to 1, the
entry is regarded as valid, and the respective data is accessible in memory. In
contrast, when the flag is cleared and both the Transition (11) and Prototype
(10) bit are set to 0, an address in a page file is referenced (see Figure 4). The
default page file pagefile.sys is saved in the root directory of the primary disk.
However, Microsoft Windows is capable of supporting 16 different page files with
a size of up to 4,095 MB on x86-based platforms. The name and location of the
files are specified in the registry string HKLM\SYSTEM\CurrentControlSet\
Control\Session Manager\Memory Management\PagingFiles, a field in the
PTE of the virtual address, the Page Frame Number (PFN, bits 1 to 4), denotes
the current file in use.
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Please note that we have only given a brief overview of the flags and ele-
ments of a PDE and PTE, respectively. A more detailed explanation of the
individual components and attributes can be found in the work of other au-
thors (Russinovich et al., 2009; Savoldi and Gubian, 2008; Kornblum, 2007b;
Maclean, 2006). The concepts described in this section need to be thoroughly
understood though, because they form the basis for many memory acquisition
and analysis tools presented in later parts of this paper.

3. Acquisition of Volatile Memory

Techniques for capturing volatile data are conventionally divided into hardware-
and software-based solutions in the literature (e.g., see Vidas, 2006; Maclean,
2006; Garcia, 2007; Libster and Kornblum, 2008; Vidas, 2010). While the latter
ones depend on functions provided by the operating system, hardware-based ap-
proaches directly access a computer’s memory for creating a forensic image and,
therefore, have long been regarded to be more secure and reliable. A publication
by Rutkowska (2007) indicates, however, that these assumptions no longer hold
true. Moreover, several concepts that have been proposed more recently rely
on a combination of both hardware and software mechanisms and cannot be
clearly categorized with the existing terminology (Libster and Kornblum, 2008;
Halderman et al., 2009). For this reason, we believe that a classification solely
on implementation-specific attributes is obsolete and is not capable of properly
characterizing the latest developments any more.

A more viable suggestion is assessing the different methods with respect
to the requirements that are necessary to obtain a (sound) memory copy of
the target machine. Inspired by the work of Schatz (2007a,b), we consider
the two factors atomicity and availability as prevalent. The latter refers to
the applicability of a certain technique on arbitrary system platforms for an
arbitrary scenario. On the other hand, atomicity intuitively reflects the demand
to produce an accurate and consistent image of a host’s volatile storage. More
precisely, an atomic snapshot is a snapshot obtained within an “uninterrupted”
atomic action in the sense of a critical section as it is used in operating systems
and concurrent programming (Lynch et al., 1993). It is free of the signs of
concurrent system activity.
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Based on these two assessment criteria we are able to broadly classify and
compare the most common memory acquisition approaches. The corresponding
decision matrix is visualized in Figure 5. Please note that while the exact place-
ment of the methods within the fields of the matrix may certainly be subject
to discussion at parts and is not the primary intention of the authors, we feel
that our illustration may give investigators an insight into when (not) to choose
a specific solution. Vital points to keep in mind are in particular:

An ideal acquisition method is characterized by both a high atomicity
and availability and is therefore located in the right upper corner of the
matrix.

Techniques that are listed in the right half of the matrix must generally be
favored upon techniques that are grouped on the left side, because they
are superior concerning atomicity (and possibly availability as well).

Methods that are located in the bottom field on the left side of the matrix
(currently: none) are generally not suitable for obtaining volatile data in
a forensically sound manner and must not be considered further.

Approaches that are categorized in the right bottom field of the matrix
are applicable for scenarios where an investigator has sufficient time for
pre-incident preparation.

Techniques that are listed in the right upper field of the matrix are espe-
cially suited for smoking gun situations, i.e., where little time between the
incident and investigation phase has passed.

In the following, we describe the different approaches in detail and outline
their individual benefits, peculiarities, and drawbacks.



3.1. Memory Acquisition Using a Dedicated Hardware Card

One of the first propositions for obtaining a forensic image of a computer’s
RAM storage was the use of a special hardware card. Carrier and Grand (2004)
presented a proof-of-concept (PoC) solution called “Tribble” that makes use of
Direct Memory Access (DMA) operations to create a copy of physical memory,
thereby bypassing possibly subverted structures of the operating system. The
card is installed as a dedicated PCI device and is capable of saving volatile infor-
mation to an attached storage medium. Upon pressing an external switch, the
card is activated, and the imaging procedure is initiated. During this process,
the CPU of the target host is temporarily suspended to prevent an attacker from
executing malicious code and illegitimately modifying the status of the system.
Once all operations are completed, control is given back to the operating sys-
tem, and the acquisition card returns to an idle state again. Two less known but
comparable implementations are proposed by Petroni et al. (2004) with their
“Copilot” prototype and BBN Technologies (2006) in the form of “FRED”, the
Forensic RAM Egztraction Device.

As the described solutions do not rely on functions provided by the operating
system, they are assumed to be generally suitable for acquiring an accurate im-
age of volatile memory. Since the processor of the host in question is successfully
halted, the imaging operation can be atomically completed without interference
by other processes as well. Last but not least, because all information is di-
rectly retrieved from physical RAM, the procedure is believed to act outside
the view of malicious applications such as rootkits, resulting in a “true” picture
of a target’s memory (Kornblum, 2006). Rutkowska (2007) has, however, re-
cently proven that it is possible to present a different view of physical memory
to the peripherals by reprogramming the chipset of the NorthBridge. Due to
this innovation, several authors conclude that hardware cards can no longer be
fully trusted and must not be regarded as forensically sound any more, mak-
ing the development of more robust and reliable memory collecting techniques
necessary (Libster and Kornblum, 2008; Ruff, 2008; Rutkowska, 2007).

In addition to these concerns, it is also important to emphasize that a PCI
card must be set up prior to its use. This characteristic limits its application
to special scenarios only. Carrier and Grand (2004, p. 12) clarify that “the
device has not been designed for an incident response team member to carry in
his toolkit”, but “rather needs to be considered as part of a forensic readiness
plan”. According to the authors, a card is thus most beneficial when installed on
(business-)critical servers, “where an attack is likely and a high-stake intrusion
investigation might occur”. Alternative options for deployment are, for instance,
within a honeypot environment?. Thereby, it is possible to capture volatile
information after a machine has been compromised and learn more about the
tools, tactics, and motives of adversaries.

2A honeypot is “an information system resource whose value lies in unauthorized or illicit
use of this resource” (Spitzner, 2003b,a). It acts as an electronic decoy for studying the
behavior of (Internet) miscreants (Honeynet Project, 2004).



3.2. Memory Acquisition via a Special Hardware Bus

As an alternative to PCI cards, several authors suggest reading volatile mem-
ory via the IEEE 1394 (Fire Wire) bus (Dornseif and Becher, 2004; Becher et al.,
2005). A corresponding forensic-related application is described by Piegdon and
Pimenidis (2007). While the original code targets Linux and MacOS platforms,
Boileau (2006b, 2008), Panholzer (2008), and Bock (2009) demonstrate the fea-
sibility of the approach for different versions of Microsoft Windows. Ruff (2008,
p. 84) adds that “any hardware bus can potentially be used for physical memory
access”. For instance, a proof-of-concept utility that illustrates Direct Memory
Access (DMA) operations with the help of the PCMCIA (PC Card) bus was
published at the ShmooCon 2006 conference (Hulton, 2006). The sample code
has, however, not been published yet.

Retrieving volatile information via the IEEE 1394 bus can address some of
the issues we have outlined in the previous section. For instance, the interface
is present by default in a great part of systems, especially laptops. However, as
Vidstrom (2006) points out, the use of the technique may cause random system
crashes and similar reliability problems when accessing regions in the Upper
Memory Area (UMA). Other authors have also indicated inconsistencies after
comparing created images with raw memory dumps (Carvey, 2007; Boileau,
2006a). For this reason, similar to the hardware card-oriented approach illus-
trated above, FireWire-based techniques are not sufficiently reliable to obtain a
precise copy of a computer’s RAM.

3.3. Memory Acquisition with the Help of Virtualization

With the help of wirtualization, it is possible to emulate complete, isolated,
and reliable system environments, so-called virtual machines, on top of a host
computer (Smith and Nair, 2005). A special software layer, the virtual machine
monitor (VMM), is responsible for sharing as well as managing and restricting
access to the available hardware resources. By emulating replicas of the different
physical components, each virtual machine is equipped with its own virtual
processor, memory, graphics adapter, network and I/O interface and may run
in parallel to other guest systems.

One exceptional characteristic of a virtual machine is its capability to be
suspended, i.e., to pause its execution process. Thereby, the state of the guest
operating system is temporarily frozen, and its virtual memory is saved to hard
disk on the underlying host. For instance, in the case of a VMuware-based
machine, all volatile data is saved to a .vmen file located in the working directory
of the virtual machine (VMware, Inc., 2010). Thus, by simply copying the
respective file, an atomically-generated snapshot of main memory can be easily
retrieved.

In 2007, (Carvey, 2007, p. 95) pointed out that “virtualization technologies
do not seem to be widely used in systems that require the attention of a first
responder”. With the growing importance of Internet-hosted services, this sit-
uation is likely to change though, and investigators will increasingly have to
examine incidents on virtual machines. With respect to these scenarios, the
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memory acquisition approach is forensically sound and only requires little ef-
fort.

3.4. Memory Acquisition Using Software Crash Dumps

All versions of Microsoft Windows 2000 and above can be configured to write
debugging information, so-called memory dump files, to hard disk when the ma-
chine unexpectedly stops working (Microsoft Corporation, 2010e). In case of
a critical failure, the system state is frozen, and the main memory as well as
relevant CPU information are saved in the system root directory for later exam-
ination. Preserving the contents of processor registers during this operation is a
unique characteristic of this method (Russinovich et al., 2009; Carvey, 2007)%. A
dump file can then either be opened with the Microsoft Debugging Tools for Win-
dows (Microsoft Corporation, 2010a) or be manually analyzed as explained by
Schuster (2006a, 2008a).

With regard to a forensic investigation, the system service may be inten-
tionally interrupted by using a third-party application (Microsoft Corporation,
2010g; Open System Ressources, 2009) or the built-in CrashOnCtriScroll feature.
In the latter case, the dump is generated upon pressing the keyboard shortcut
Right Ctrl + Scrolllock + ScrollLock (Microsoft Corporation, 2010d). It
is important to note that this capability is disabled by the operating system
by default though. Activation requires editing a certain value in the Windows
registry (Russinovich et al., 2009), a subsequent reboot*, and only works with
PS/2 keyboards initially. For universal serial bus (USB) devices, a separate
hotfix must be installed (Microsoft Corporation, 2010f). Due to these modifica-
tions, the applicability of the technique is forensically only suitable in specific
situations, analogously to the use of a dedicated PCI card as explained in Sec-
tion 3.1. Moreover, even though the memory snapshot is atomically created by
halting the processing unit, parts of the system pagefile are overwritten during
this operation (Russinovich et al., 2009). These changes on the hard disk of the
target system are not in accordance with best practices in computer forensics
and may possibly lead to a later legal discussion.

3.5. Memory Acquisition with User Level Applications

Especially at the beginning of memory-related forensic research, various soft-
ware solutions have been published by different third parties to acquire a copy
of physical memory directly from user space. A prominent example is Data-
Dumper (dd) by Garner (2009) which is part of the Forensic Acquisition Util-
ities (FAU) suite. When run with administrative privileges, dd invokes the
internal \\.\Device\PhysicalMemory section object to create a full memory
dump of the target machine (Crazylord, 2002). Due to security reasons, user

3We assume the system is configured to save at least a full kernel memory dump. For more
information on this subject, please refer to Microsoft Corporation (2010e).

4A technique for omitting the mandatory reboot of the operating system was outlined by
Ruff (2008).
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level access to this object was restricted in Windows Server 2003 and later op-
erating systems though (Microsoft Corporation, 2010b). With regard to the
configuration of modern computer platforms, the technique is thus only of very
limited value to date.

Rather than creating a (much larger and more time-consuming) forensic
duplicate of the entire volatile storage of a host, several other utilities permit
saving the address space of a single process: With PMDump, it is possible to
“dump the memory contents of a process to a file” (Vidstrom, 2002). The Process
Dumper utility (PD) by Klein (2006b) obtains a process’s environment and state
by retrieving the data and code mappings of an executable. Since all collected
information is redirected to standard output by default, the final image can be
easily transferred over a remote connection for further investigation, e.g., with
netcat (nc), a freely-available network administration utility (Craton, 2009)3.

Both PMDump and Process Dumper also have various drawbacks though:
First, they are closed source and use a proprietary data format that make the
development of additional parsing tools more difficult. Second, as the programs
require the specification of a process ID, a corresponding process listing util-
ity must be run in the first place. This operation further affects the level of
contamination on the target host, however.

As the techniques described above neither rely on specific hardware setups or
devices nor do they require a pre-defined system configuration, they are gener-
ally suitable for most incident scenarios and permit capturing a forensic image
even in case a first responder only has little time for preparation. However,
while the imaging process is comparatively easy to perform, the approaches still
suffer from various inherent weaknesses: First, as we have already indicated,
many programs only work on specific operating systems or are bound to specific
architectures, e.g. the x86 32-bit platform. Second, as all applications must
be loaded into memory before they can be executed, valuable information may
be destroyed before it can be preserved. Sutherland et al. (2008) have shown
in a study that the impact of the tools on a target machine can be significant.
What is worse, other processes are usually not impeded from altering the volatile
storage during the imaging operation, resulting in a potentially non-atomic and
“fuzzy snapshot” (Libster and Kornblum, 2008, p. 14) of the source data. Last
but not least, as all methods depend on functions provided by the operating
system, they are vulnerable to subversion. A rootkit might, for instance, deny
direct access to the physical memory object or return a modified representa-
tion of RAM during the image generation operation in order to evade detection
(Vidas, 2006; Bilby, 2006; Sparks and Butler, 2005). Although these types of
manipulations are likely to indicate the presence of a malicious software appli-
cation to the eyes of a skilled analyst (Kornblum, 2006), relying on an untrusted

5Netcat does not establish an encrypted communication channel by default. To securely
transfer data over the network, the connection can be tunneled over the SSH (Secure Shell)
protocol. Alternatively, the cryptcat implementation may be used as well. For more informa-
tion on these topics, please see Farmer and Venema (2005).
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operating system eventually “decreases the reliability of the evidence” (Carrier
and Grand, 2004, p. 6), too.

3.6. Memory Acquisition with Kernel Level Applications

To mitigate the limitations of user space acquisition utilities described in
the previous section, software vendors increasingly provide kernel level drivers
to create a forensic image of physical memory. Freely-available distributions
include Mantech’s Memory DD (mdd, ManTech CSI, Inc. (2009)), Moonsols’
Windows Memory Toolkit (MoonSols, 2010), and Memoryze by Mandiant (Man-
diant, 2010). Commercial alternatives are offered by Guidance Software ( WinEn
which is a part of EnCase, Guidance Software (2010)), AccessData (Foren-
sic Toolkit, AccessData (2010)), GMG Systems (KnTDD which is part of the
KnTTools, GMG Systems, Inc. (2007)), and HBGary (Fastdump Pro, HBGary
(2009)). Even though the different solutions are usually available for various
versions of the Windows product family, they still cannot overcome the inher-
ent weaknesses we have already outlined. These include manipulations due to
concurrently running (system) processes and, consequently, a not sufficiently
precise representation of a host’s memory as well as the possibility of falling
prey to a compromise attempt (see Section 3.5).

In order to cope with these concerns, Libster and Kornblum (2008) propose
integrating the capturing mechanism as an operating system module into the
system core which is loaded at boot time and invoked by a special keyboard trig-
ger. According to the authors, distinctive characteristics of the module would
be the capability to halt active system processes, thereby ensuring atomic oper-
ations. In addition, support for several storage dump locations, e.g., a remote
network drive or an externally attached media, is encouraged. For increased
security, the use of hardware-side, read-only memory flags or encrypted Trusted
Platform Modules (TPMs (Group, 2007)) is suggested. These guarantee the
integrity of the imaging operation and prevent attacks on the executing code.

3.7. Memory Acquisition via Operating System Injection

Schatz (2007a) has introduced a proof-of-concept application called Body-
Snatcher which injects an independent operating system into the possibly sub-
verted kernel of a target machine. By freezing the state of the host computer
and solely relying on functions provided by the acquisition OS, an atomic and
reliable snapshot of the volatile data may be created. The presented prototype
is, however, platform-specific to a high degree due to its low level approach and
high complexity. In addition, it is limited to single processor mode at the time
of this writing, consumes a significant amount of memory, and only supports
the serial port for I/O operations. Therefore, even though the concept is very
promising, its technical constraints still need to be resolved, before it can be
truly applied in real-world situations.
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3.8. Memory Acquisition via Cold Booting

Another encouraging approach has been outlined by Halderman et al. (2009).
It is based on the observation that volatile information is not immediately erased
after powering off a machine, but may still be recovered for a non-negligible
amount of time (Chow et al., 2005). By artificially cooling down the respective
RAM modules, e.g., with liquid nitrogen, remanence times may even be substan-
tially prolonged. The target machine can then be restarted (cold booted) with a
custom kernel to access the retained memory in the next step. The usability of
this approach has been proven in a number of recent works: Vidas (2010) has
published AfterLife, a proof-of-concept demonstration that copies the contents
of physical RAM to an external storage medium after rebooting. Chan et al.
(2008, 2009) implemented a special booting device that revives the host system
environment after cutting power and provides the investigator with an interac-
tive shell to retrieve state-related system data. Most of the projects are still in
a state of flux though and are not designed to be used in daily practice yet.

3.9. Memory Acquisition Using the Hibernation File

The Windows hibernation file (hiberfil.sys) is increasingly regarded as
another source of valuable information (Carrier and Grand, 2004; Schatz, 2007a;
Libster and Kornblum, 2008; Ruff, 2008; Zhao and Cao, 2009). It is stored in
the root directory of the local hard drive and contains runtime-specific informa-
tion. When the operating system is about to enter an energy-saving sleep mode
and is suspended to disk, the system state is frozen, and a snapshot of the ex-
isting working set is preserved. Thus, in contrast to many other software-based
solutions we have described, investigators are able to capture a consistent and
atomically-generated image of volatile data. However, the file is compressed
in order to save disk space and uses a proprietary format which has long im-
peded thorough understanding and applicability in forensic investigations. De-
tails about its structure have been discussed in more recent publications though
(Suiche, 2008a). A working prototype that is capable of converting the file
to raw dump format as well as reading and writing specific memory sections
was developed in the course of the SandMan project (Ruff and Suiche, 2007;
Suiche, 2008b). At the time of this writing, it has been superseded by Moon-
Sols (MoonSols, 2010). The commercial version supports the entire family of
Windows operating systems, including both 32- and 64-bit versions.

4. Analysis of the Acquired Memory Image

After a forensic copy of physical memory has been generated with one of the
techniques outlined in the previous sections, an in-depth analysis of the acquired
data can begin. Primitive approaches that are described in the literature rely
on simple string searches, e.g., with command line utilities such as strings and
grep or more powerful applications such as WinHex (X-Ways Software Technol-
ogy AG, 2010), to look for suspicious patterns, usernames, passwords, and other
textual representations in the created image (Stover and Dickerson, 2005; Zhao
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and Cao, 2009). While these methods are easy to apply, they are also noisy,
cause a huge overhead, and lead to a large number of false positives (Beebe
and Dietrich, 2007). Beebe and Clark (2007, p. S49) argue that “{f]requently,
investigators are left to wade through hundreds of thousands of search hits for
even reasonably small queries [...] - most of which [...] are irrelevant to investiga-
tive objectives”. Even when string searches produce quite accurate results, they
typically do not take into account the context of the respective information and,
as a consequence, are of limited help to the investigation process. For instance,
as Savoldi and Gubian (2008, p. 16) point out, “the retrieval of a potentially
compromising string (e.g. ‘child porn’) certainly provides evidence if found in
the memory assigned to a process l[aJunched by the user, but it would be likely
rejected by jury if that memory belonged to a piece of malware”. In addition,
Hejazi et al. (2009, p. S123) note that the “existence of unknown sensitive data
in the memory is the main important limitation of this method”. Thus, a foren-
sic analyst may, for example, solely look for specific keywords, but at the same
time, disregard “names, addresses, user IDs, and strings that are not present
in the list the investigator is looking for while they are present in the memory
dump and are of paramount importance for the investigative case” (Hejazi et al.,
2009, p. S123). In sum, these procedures are not sufficently reliable with re-
gard to a forensic investigation. Efficient solutions to these problems have been
developed over the last years but are not further illustrated in the remainder
of this paper since they fall in the area of information retrieval (IR) and text
mining tasks. Good introductions to these topics have been compiled by Beebe
and Clark (2007) as well as Roussev and Richard III (2004) though.

As a viable alternative to string searching algorithms, security professionals
recommend a more structured methodology to find valuable traces in memory.
It involves examining what types of data may be contained within a captured
image, how these types are defined, and where they are located. Relevant pieces
of information are generally stored in the system or user address space, either
directly in RAM or in the local page file, and include (Hoglund, 2008; Sutherland
et al., 2008)

e the list of running system processes and possibly installed malicious soft-
ware applications,

e cryptographic keys,
e the system registry,

e established network connections and network-related data such as IP ad-
dresses and port information,

e open files, and

e system state- and application-related data such as the command history,
date and timestamp information.

The prevailing techniques to recover the specified artifacts are subject of the
following sections.
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4.1. Process Analysis

An essential part of a forensic investigation is checking the integrity of the
operating system on the suspect machine and distinguishing legitimate compo-
nents from suspicious and potentially malicious applications. Thus, the identi-
fication and sound examination of running processes becomes “a basic security
task that is a prerequisite for many other types of analysis” (Dolan-Gavitt et al.,
2009, p. 2).

Early approaches attempted to parse internal system resources to enumerate
the list of loaded programs (Burdach, 2005; Betz, 2006; Garner, 2007). How-
ever, as various authors point out, an increasing number of malware executables
use so-called rootkit techniques and subvert integral system structures to avoid
detection (Aquilina et al., 2008; Ligh et al., 2010). For instance, the FU rootkit
(Butler, 2005) implements a method known as Direct Kernel Object Manipula-
tion (DKOM) to unlink itself from the ActiveProcessLinks list, a member of
the _EPROCESS (ezecutive process) block every process is represented by (Bilby,
2006). This operation is illustrated in Figure 6(b), the skull icon over the second
structure indicates the malicious rootkit process. Due to these interventions, list
and table walking solutions are likely to fail and must not be seen as reliable.

S
_EPROCESS _EPROCESS _EPROCESS
ActiveProcessLinks ActiveProcessLinks ActiveProcessLinks
LIST_ENTRY { \ LIST_ENTRY { \‘ LIST_ENTRY {
FLINK FLINK FLINK
BLINK BLINK BLINK
} ™ || } ™ | }

(a) Structure of the Process List Before a DKOM Attack

L
T
_EPROCESS _EPROCESS _EPROCESS
[ ———— 1
ActiveProcessLinks | | — [ActiveProcessLinks [ [——]_| ActiveProcessLinks
e
LIST_ENTRY { LIST_ENTRY { LIST_ENTRY {
FLINK FLINK FLINK
BLINK BLINK BLINK
} } }
~_| | —

(b) Structure of the Process List After a DKOM Attack

Figure 6: Subversion of a Process List Using
Direct Kernel Object Manipulation (DKOM)
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In order to cope with these issues, Schuster (2006d) developed a signature-
based scanner. It uses a set of rules that precisely describe the structure of
a system process or thread, respectively. A sample signature is illustrated in
Listing 1. In the given example, it is checked that the page directory is aligned
at a page boundary, the control structures of the working thread are contained
in kernel space, and the fields of the DISPATCHER_HEADER structure match pre-
defined values.

The results of the scanner can be compared with the output of the standard
process list in the next step. Differences and anomalies potentially indicate
the presence of a malicious program and need to be inspected in more detail.
Similar strategies are proposed by Walters and Petroni (2007), Carr (2006),
and Rutkowska (2005). Walters and Petroni (2007, p. 14) note, however, that
“a reliable pattern may rely on characteristics of an object that are not essential”.
Consequently, an adversary may change the value of a non-essential field of the
process object without affecting the stability of the underlying operating system.
For instance, in the case of Listing 1, it is also possible to set the value of the
Size field to zero. Thereby, the rule of the scanner is circumvented, and the
respective process becomes invisible. To prevent such scenarios, Dolan-Gavitt
et al. (2009) have created so-called robust signatures which are solely based on
fields that are critical to system functionality. A manipulation of such a field
leads to an automatic system crash and, thus, renders an attack useless. With
regard to the core _EPROCESS structure outlined above, 72 fields (out of 221)
suffice this requirement and, therefore, form strong candidates for a process
signature®.

An alternative method is suggested by Zhang et al. (2009, 2010). The au-
thors use a combination of scanning and list traversing techniques that rely
on the Kernel Processor Control Region (KPCR). This region stores processor-
specific data and contains a separate block, the KPRCB, that, for instance, saves
CPU-related statistics as well as scheduling information about the current and
next thread (Russinovich et al., 2009). With the help of this information, the
corresponding process list can be restored as follows (Barbosa, 2005; Ionescu,
2005; Dolan-Gavitt, 2008b): The KPCR includes a field KdVersionBlock that
points to a _DBGKD_GET_VERSION64 structure that, in turn, references the un-
documented _KDDEBUGGER_DATA64 structure. Part of this structure is the global
variable PSActiveProcessHead that serves as a pointer to the list of active
_EPROCESS structures.

In Microsoft Windows XP, both the KPCR and KPRCB are located at
fixed addresses (0xFFDFFO00 and OxFFDFF120, respectively). In later versions,
the base addresses are dynamically computed. Since the KPCR structure is
self-referencing (offset 0x1C) and the KPRCB starts at offset 0x120, a simple
signature can be generated though to discover the structures and enumerate the
running programs in the next step (Aumaitre, 2009).

6 After performing a fuzzing test, the number of strong signature candidates was reduced
from 72 fields to 43 (Dolan-Gavitt et al., 2009).

17



PageDirectoryTable !=0
PageDirectoryTable ¥ 4096 == 0
(ThreadListHead .FLink > Ox7FFFFFFF) &&
(ThreadListHead .Blink > Ox7FFFFFFF)
DISPATCHER_HEADER.Type == 0x03
DISPATCHER_HEADER.Size == O0Ox1b

Listing 1: Example of a Process Signature (Schuster, 2006d)

4.2. Cryptographic Key Recovery

Due to the spread of (freely) available encryption technologies, security pro-
fessionals are likely to increasingly encounter secured and password-protected
files and disks in the future (see Section 1). In case an investigator is unable to
obtain the desired information from the suspect, e.g., through social engineer-
ing, the restoration of cryptographic keys from volatile memory may therefore
become a central task in the course of a forensic analysis.

To solve this problem, different methods are proposed in the literature: Har-
greaves and Chivers (2008) describe a linear memory scanning technique that
moves through RAM one byte at a time, using a block of bytes as the possible
decryption key for the volume in question. The brute force-oriented procedure
does not require a deep understanding of the underlying operating system and,
thus, can be easily generalized according to the authors. However, it cannot be
directly applied if the key is split, i.e., is not stored in a contiguous pattern in
memory.

Shamir and van Someren (1999) seek for sections of high entropy to locate
an RSA key within “gigabytes of data”. The solution exploits the mathematical
properties of the cryptographic material. In contrast, the attack described by
Klein (2006a) is based on the observation that both private keys and certificates
are stored in standard formats. Klein (2006a) constructs a simple search pat-
tern to easily dump the secret information from RAM. A pattern-like approach
is also implemented by Kaplan (2007). His idea stems from the fact that, for
reasons of security, cryptographic keys are generally not paged out to disk and,
as a result, are typically saved in the non-paged pool of the operating system (see
Section 2.1). The non-paged pool consists of a range of virtual addresses that
always reside in physical memory (see also Russinovich et al., 2009; Schuster,
2006b, 2008b). Since in kernel space, memory is a shared resource, allocated
regions may be associated with an identifier, the so-called pool tag (Microsoft
Corporation, 2010c). Consequently, “a cryptosystem-specific signature, consist-
ing of the driver specific pool tag and pool allocation size are all that is necessary
to extract pool allocations containing key material from a memory dump with
an acceptably small number of false positives” (Kaplan, 2007, p. 18). As an
alternative to the non-paged pool, it is possible to prevent regions of virtual ad-
dress space from being written out to disk by calling the Virtuallock function.
Thereby, “[p]ages that a process has locked remain in physical memory until the
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process unlocks them or terminates” (Microsoft Corporation, 2010h). Whether
these mechanisms are relevant to the forensic recovery of cryptographic keys has
not been investigated to the best knowledge of the authors though.

Walters and Petroni (2007) outline a different concept that relies on an
analysis of publicly available source code. They identify internal data structures
that are responsible for holding the master key. As Maartmann-Moe et al. (2009,
p. S133) point out, Walter and Petroni “do, however, not describe how to locate
the different structures in memory, and neither do they discuss the fact that
some of these may be paged out, thereby breaking the chain of data structures
that leads to the master key if only the memory dump is available for analysis”.

Last but not least, Halderman et al. (2009) suggest parsing a computer’s
memory for key schedules. The authors leverage remanence effects in DRAM
modules and launch a cold boot attack on the target machine (see Section 3.8).
After loading a custom operating system, the volatile data is extracted, the key
material is retrieved, and the hard drive automatically decrypted. The perfor-
mance of this process is improved in the works of Heninger and Shacham (2009).
Likewise, Tsow (2009) presents an algorithm that is capable of recovering cryp-
tographic information from memory images that are significantly decayed and
is magnitudes faster than the original method. Finally, Maartmann-Moe et al.
(2009) extend the conducted research on additional ciphers and illustrate the
vulnerability of several well-known whole-disk and virtual-disk encryption utili-
ties for these types of side-channel operations. However, it is important to note
that these attacks can be mitigated by implementing cryptographic algorithms
entirely on the microprocessor. A corresponding proof-of-concept application
has been published by Miiller et al. (2010) and has been further sophisticated
more recently (Miiller et al., 2011).

4.3. System Registry Analysis

The Windows registry is a central, hierarchically-organized repository for
configuration options of the operating system and third party applications (Mi-
crosoft Corporation, 2008). It is internally structured into a set of so-called
hives, i.e., discrete, treelike databases that hold groups of registry keys and cor-
responding values (see also Russinovich et al., 2009). Most registry hives (e.g.,
HKLM\SYSTEM, HKLM\SOFTWARE) are persistently stored in the \system32\config
folder of the operating system”. However, a number of wvolatile hives (e.g.,
HKLM\HARDWARE) are entirely maintained in RAM only and are created every
time the system is booted.

While the examination of on-disk registry data is a quite established pro-
cedure for a forensic investigation to find possible pieces of evidence (Carvey,
2005; Mee et al., 2006; Chang et al., 2007), a solely memory-based approach has
been documented by Dolan-Gavitt (2008c) only recently. In the following, we
give a short overview about the prevailing techniques used in his work.

"User-specific settings are saved in the file NTuser.dat that is located in the
%SystemDrive),\Documents and Setttings\<username> folder.
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A registry hive consists of a so-called base block and a number of hive bins
(hbins). The base block with a fixed size of 4 KB defines the start of the hive
and contains a unique signature (regf) as well as additional meta information
such as a time stamp that saves the time of the last access operation, an index
to the first key, the RootCell, the internal file name of the hive, and a checksum.
A hive bin is typically 4 KB wide (or a multiple of it) and serves as a container
for cells that, in turn, store the actual registry data. Thus, to read a certain
key or value from RAM, the correct hive and corresponding cell must be found
first. The former task can be quite easily solved by creating a hive-specific
signature: Internally, a hive is represented by a _CMHIVE structure which is
allocated from the paged pool of the system (see Section 2.1) and referenced by
the tag CM10. Furthermore, it embeds a sub-structure _HHIVE with the string
constant OxbeeObee0. These pieces of information are sufficient to construct a
unique search pattern and locate a hive in memory. To enumerate the entire
list of loaded hives, the HiveList member structure must be simply followed in
the last step. It acts as a link between the individual registry repositories.

Retrieving pre-defined keys or values from a memory image is slightly more
complex: Dolan-Gavitt (2008a) notes that because “space for the hives is allo-
cated out of the paged pool, there is no way of guaranteeing that the memory
allocated for the hive will continue to be contiguous”. For this reason, a strategy
is used that is similar to the virtual-to-physical address translation mechanism
we have described in Section 2.2. A cell is generally referenced by a cell in-
dex. This field can be split into four different components. The first element,
a one-bit flag, determines the stable (on-disk) or volatile storage map for the
hive which are both saved in the _HHIVE sub-structure. With the help of the
10-bit directory index, the correct entry in the cell map directory can be lo-
cated. The cell map directory refers to a cell map table with 512 (2°) entries
that, in turn, point to the virtual address of the target bin. Using the third
and fourth component of the cell index, the correct cell and cell information
can be finally discovered (see Figure 7). Dolan-Gavitt (2008e) has published a
proof-of-concept utility that is capable of extracting the list of open keys and
displaying the corresponding registry data. The software is freely available for
download and integrated into the Volatility analysis framework that we will in-
troduce in more detail in a later section of this paper. It is, however, important
to emphasize that the techniques described above only supplement traditional
investigation methods. As later versions of Microsoft Windows map only 16-KB
portions of a hive into RAM when they are needed (Russinovich et al., 2009), it
is possible that “parts of the registry may have never been brought into memory
in the first place” and, consequently, “it cannot be assumed that the data found
in memory is complete” (Dolan-Gavitt, 2008¢c, p. S30).

4.4. Network Analysis

Analyzing open network connections as well as inspecting incoming and out-
going network traffic is an integral part of a forensic investigation and becomes
particularly important in the face of a potentially compromised system. Ma-
licious applications typically bind to pre-defined ports and enable attackers to
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Figure 7: Structure of a Cell Index
(Source: Dolan-Gavitt, 2008c, p. S28)

execute arbitrary commands on the target machine, disable security protections,
and upload or download files (Aquilina et al., 2008; Ligh et al., 2010). Contem-
porary examples also include launching Distributed Denial of Service (DDoS) at-
tacks and consuming the resources of a host in order to degrade its performance
(Peng et al., 2007). A vast number of utilities, either for live response (e.g.,
TCPView (Russinovich, 2010), F'Port (Foundstone, Inc., 2000)) or post-mortem
examination (e.g., PyFlag (Cohen, 2008)), have been developed to reveal such
threats. Since many network-related data are also temporarily stored in RAM,
memory forensic techniques can help correlate results with the tools described
above in order to gain a thorough understanding of an incident.

The first solution was suggested by Schuster (2006b). He scans the non-
paged pool of the operating system to find allocations for listening sockets. His
algorithm is based on a unique pool tag (TCPA, saved in little-endian format)
and a pre-defined pool size (368 bytes) that can be recovered after disassembling
the tcpip.sys driver where the respective operating system functions are im-
plemented in. Once the appropriate addresses have been identified, the socket
list can be easily created. With a similar procedure, it is possible to retrieve the
list of open network connections.

A different methodology is described by Ligh et al. (2010) and Okolica and
Peterson (2010): The authors locate two internal hash tables (_AddrObjTable,
_TCBTable) in the tcpip.sys driver file. Each of the hash tables references a
singly linked list of objects that include information about the IP address and
port bindings®. By traversing the lists as shown in Figure 8, existing sockets
and open network connections can be enumerated.

8Details about the structure of these objects can be found in the work of Ligh et al. (2010).
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Figure 8: Enumerating the List of Socket and Connection Objects
(Source: Based on Ligh et al., 2010, p. 681)

It is interesting to note that a malicious manipulation of these lists, simi-
lar to the DKOM attack described in Section 4.1, appears to hamper system
functionality and, thus, is likely to be detected in practice. For demonstration
purposes, Ligh et al. (2010) manually unlinked an object to hide the presence of
a listening socket. This operation disrupted the communication process though,
and connections could no longer be initiated. From a forensic point of view, list
crawling-based approaches can therefore be seen as reliable to date and permit
a legit and unaltered view of network activities.

4.5. File Analysis

Similar to the examination of running system processes (see Section 4.1),
inspecting the list of open files and dynamically loaded libraries (DLLs) a pro-
gram is referencing may be crucial to reveal suspicious activities in the course
of an investigation. For instance, an adversary might inject a malicious DLL
in the address space of a legitimate process by exploiting a remote vulner-
ability to hide her presence on the target machine (Miller and Turkulainen,
2006; Walters, 2006). As Walters (2006, p. 2) points out, these techniques
“thwart conventional forms of filesystem forensic analysis” and “are commonly
labeled as ‘anti-forensic’, since data is not written to any non-volatile storage
and [...] would typically be lost during common incident response procedures”.
To counter such threats, security professionals recommend analyzing the Process
Environment Block (PEB), a structure which lives in the user address space and
is part of every process (see Russinovich et al., 2009). The Process Environment
Block contains a Ldr member with three doubly linked lists that save the full
name, size, and base address of all loaded libraries?. Simply enumerating the
individual lists may thus suffice to identify an injection attack. It is critical

9The three doubly linked lists (InLoadOrderModuleList, InMemoryOrderModuleList,
InInitializationOrderModuleList) contain the same modules but in different order. For
more information, please refer to Russinovich et al. (2009).
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to stress though that the approach can be subject to manipulation as various
rootkit authors have demonstrated (Darawk, 2005; Kdm, 2004). For this reason,
Dolan-Gavitt (2007a) proposes an alternative methodology which is based on
Virtual Address Descriptors (VADs).

A Virtual Address Descriptor is a kernel data structure that is maintained
by the memory manager to keep track of allocated memory ranges (Russinovich
et al., 2009). It stores information about the start and end of the respective
addresses as well as additional access and descriptor flags. Each time a process
reserves address space, a VAD is created and added to a self-balancing tree for
maintenance reasons. A node in the tree is associated with a pool tag and is of
type _MMVAD_SHORT (“VadS”), _MMVAD (“Vad”), or _MMVAD_LONG (“Vadl”) (Dolan-
Gavitt, 2007a). The latter two store a pointer to a _Control_Area structure
that, in turn, points to a _File_0Object that holds the unique file name (see the
lower half of Figure 9). Consequently, the entire list of loaded modules can be
retrieved by traversing the VAD tree from top to bottom and following the cor-
responding _Control_Area and _File_Object references!?. Furthermore, it is
possible to reconstruct the contents of memory-mapped files, most importantly,
executables. While it is unlikely to completely rebuild the exact form of a binary
due to changes in code variables at runtime (Kornblum, 2007a), the recovered
copy can frequently be reverse engineered and inspected upon malicious behavior
(see also Schuster, 2006¢c). These operations supplement traditional file carving
techniques that are implemented in utilities such as Foremost (United States
Air Force Office of Special Investigations, 2001) and Scalpel (Golden G. Richard
ITI, 2006) and are suited for scenarios where an on-disk restoration has failed. A
proof-of-concept application has been published by Dolan-Gavitt (2007b) and
has been integrated into the analysis framework Volatility that we will describe
in depth in Section 5. Van Baar et al. (2008) have extended these works and
developed a prototype that is capable of finding file remnants in RAM even if
the associated process has terminated.

In spite of these features, it is important to emphasize that the VAD tree
itself may be the target of a compromise attempt. An adversary with system
privileges might, for instance, remove a node from the tree, similar to the DKOM
attack presented in Section 4.1, or overwrite the pointer to the _Control_Area
structure, thereby effectively hiding a malicious artifact from the forensic prac-
tices described above (Dolan-Gavitt, 2007a; Ligh et al., 2010). Even though we
are not aware of any malware species that leverage these types of modifications,
sample code has been written that proves the deficiencies of many security prod-
ucts offered on the market to date (NT Internals, 2009). Therefore, investigators
should evaluate data from various sources to obtain views from multiple angles
of the compromised system.

10The root of the tree is saved in the VADRoot member of a process’s _EPROCESS structure.
Strategies to find this structure in memory are explained in Section 4.1.
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Figure 9: Virtual Address Descriptor (VAD) Tree
(Source: Based on Dolan-Gavitt, 2007a)

4.6. System State- and Application-Specific Analysis

In addition to the pieces of evidence an investigator may collect with the
techniques described in the previous sections, a memory image frequently con-
tains a myriad of information about the system state that can be of great benefit
to an investigation. Especially the aforementioned _EPROCESS block is a source
of valuable data. For instance, the StartTime and ExitTime fields indicate the
start and respective end time of a process and may be parsed to create forensic
timelines. In addition, the periods an application has spent in system and user
mode can be derived from members of the kernel process (_KPROCESS) block, a
structure which is part of the _EPROCESS environment (see Russinovich et al.,
2009). Schuster (2008b) has proven that these types of artifacts may be recov-
ered from RAM even after a program has terminated for more than 24 hours.
Furthermore, with the help of the Token member, it is possible to reconstruct
the security context of an application. As Russinovich et al. (2009, p. 473) ex-
plain, “a security context consists of information that describes the privileges,
accounts, and groups associated with the process or thread”. Of particular in-
terest is the list of user and group SIDs (Security Identifiers) that eventually
reveal the name of the user and corresponding group account the executable
was run as (see Dolan-Gavitt, 2008d)).

A different research focus is set by Stevens and Casey (2010). They dissect
the structure of the DOSKEY utility that is integrated into the command shell
and permits editing past commands as well as displaying the command history.
The latter is solely maintained in memory and is only accessible as long as the
command prompt is open. As Stevens and Casey (2010, p. S58) point out, “[ijn
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practice, this makes recovering the command history difficult due to its volatile
nature and the low likelihood of finding an open command window during an
investigation”, even though major parts “may be recoverable from memory for
some time after the windows has been closed”. The authors generate a unique
signature for various DOSKEY elements and succeed in restoring command history
objects from a number of reference data sets, including intact lists of entered
commands. As these “might contain the only retrievable traces of a deleted
file or suspect activity”, such types of examinations support other system state-
oriented investigation methods and “can provide significant context into how
and what occurred on [a] system” (Stevens and Casey, 2010, p. S57).

While most approaches we have described so far target the operating system
architecture, “one of the issues currently faced in the analysis of physical mem-
ory is the recovery and use of application-level data” (Simon and Slay, 2009,
p- 996). As Simon and Slay (2010) argue, these steps become necessary due to
the increasing spread of anti-forensic technologies and a trend towards online
and network applications. However, research results in this area still remain
sparse to date which may be partially due to the low lifespan of data loaded in
the user address space (Solomon et al., 2007). Published solutions mainly com-
prise instant messaging and Voice over IP (VoIP) applications (Gao and Cao,
2010; Simon and Slay, 2010). Other security professionals have concentrated
on finding remnants of social communication platforms in RAM (Bryner, 2009;
Drinkwater, 2009). With the growing use of these services, additional and more
advanced techniques are likely to be developed in the future.

5. Volatility: A Memory Analysis Framework

While most memory analysis utilities we have described in the previous sec-
tions sophistically solve a specific problem, they were typically not designed
with a holistic forensic process in mind but rather as a proof-of-concept demon-
stration. As a consequence, many programs have their own user interface, must
be invoked with different command line options, and generally neglect inter-
process communication with other applications. In addition, some tools are
OS-dependent and only work with specific platforms and configurations. Vidas
(2006) notes that, for instance, the structure of the _EPROCESS block signifi-
cantly differs across operating system versions and service pack levels, rendering
hard-coded address offsets in process scanners ineffective. In sum, these char-
acteristics force security professionals to thoroughly understand the scope and
limitations of a myriad of individual solutions, and great efforts must be made to
correlate results and generate homogenous reports. Case et al. (2008, p. S65) ar-
gue, “[a]s the complexity of systems grows rapidly, it becomes ever more difficult
for an investigator to perform thorough, reliable, and timely investigations”.

In order to cope with these issues, Walters and Petroni (2007) suggest inte-
grating memory forensic techniques with the digital investigation process model
proposed by Carrier and Spafford (2003). As Walters and Petroni (2007, p. 2)
point out, the model “allows us to organize the way we think about, discuss, and
implement the procedure that are typically performed during an investigation”
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and “forces us to think about all phases of an investigation and how the tools
and techniques that are used during a digital investigation fit together to sup-
port the process”. Their work builds the foundation for the forensic framework
Volatility (Volatile Systems, LLC, 2008) which, in turn, has been embedded in
several other application suites such as PyFlag (Cohen, 2008), DFF' (ArxSys,
2009), or PTK (DFlabs, 2010). Haruyama (2009) created a collection of scripts
to port Volatility to the commercially distributed Encase environment.

With respect to its architecture, Volatility consists of several core modules
that are written in Python. The functionality of the application can be fur-
ther extended with plug-ins that are provided by the developer community'!.
Even though earlier releases were solely capable of examining images of Mi-
crosoft Windows XP, the most recent branch (1.4) also supports current oper-
ating systems, including Windows Vista and Windows 7. An overview of impor-
tant program features can be seen in Appendix A, the complete list of modules
can be found in the work by Ligh et al. (2010) or when running Volatility with
the -h switch.

In sum, the framework implements a great part of the concepts and meth-
ods we have outlined in this paper and has already been successfully leveraged
in different scenarios (DFRWS, 2008; Smith and Cote, 2010). Its architecture
makes it suitable for a high degree of memory forensic-related tasks. However, it
is also important to note that a high level of expertise is required to interpret ex-
tracted information and correlate results. Therefore, at the time of this writing,
Volatility predominantly aims at academic researchers and security profession-
als with a strong technical background who are able to adapt the framework to
their needs on a case-specific basis.

6. Conclusion and Future Work

The volatile storage of a computer contains a plethora of valuable informa-
tion that may be key in the course of an investigation. Data found in RAM
or in the system page file may significantly contribute to the reconstruction of
an incident and therefore, supplement hard disk- and persistent media-oriented
approaches in computer forensics. For this reason, best practices should gener-
ally include preserving those artifacts for later examination, correspondent to
the guidelines as proposed by Brezinski and Killalea (2002). In sum, “during
the forensic process as much attention must be paid to volatile memory as is
paid to the more traditional sources of evidence” (Maclean, 2006, p. 29).

We have illustrated the prevalent concepts for creating a memory snapshot
of a running machine. However, security professionals must also be aware of
the scope and limitations of the different technologies. Understanding the in-
dividual benefits and drawbacks is crucial for choosing an adequate acquisition
strategy. Particularly the impact of software-based solutions has been assessed

1A comprehensive list of available plug-ins is maintained by members of the Forensics Wiki
project (Forensics Wiki, 2010).
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only marginally at the time of this writing and must be evaluated in more detail
in the future.

The documentation and analysis of evidence found in memory has received
broad attention in research more recently. As we have outlined in Section 5,
existing solutions are mainly problem-oriented to date though and frequently
fail to provide appropriate interfaces for data import/export tasks and correlat-
ing results. The Volatility framework we have briefly outlined in the previous
section addresses some of these issues and is capable of processing images in
raw, crash dump, and hibernation file format. Due to its modular design, the
functionality of the application can be easily extended if necessary. Case et al.
(2008, p. S65) emphasize, however, that “merely swamping the user with all
available data [...] falls well short of what is actually needed” and “is not, by
itself, very useful”. Thus, it is also important to develop suitable visualization
techniques in order to properly present the collected evidence. Only then will
analysts fully recognize memory forensics as “a critical component of the digital
crime scene” (Walters and Petroni, 2007, p. 15) and not as an additional burden
that impedes the timely and cost-effective completion of a case.
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A. Integral Modules of the Volatility Memory Forensics Framework

Module Name

Description

connections

Locates the _TCBTable hash table in the tcpip.sys
driver file and traverses the singly linked list of
_TCPT_OBJECT entries to enumerate open network con-
nections on the target system (see Section 4.4).

connscan?

Scans the non-paged pool of the operating system for
allocations that contain information about open network
connections (see Section 4.4).

dlllist

Retrieves the base address, size, and path of all dy-
namically loaded libraries (DLLs) that are referenced
by a running application. For this operation, the
Ldr structure of the Process Environment Block (PEB)
is parsed. It stores three doubly linked lists of
_LDR_DATA_TABLE_ENTRY types that hold the respective
information (see Section 4.5).

files

Retrieves the list of open file handles that is maintained
by a process (see Section 4.5).

getsids

Reconstructs the security context of a process to retrieve
the list of user and group SIDs (Security Identifiers) the
application is associated with (see Section 4.6).

hivelist

Prints the virtual address and name of hive structures
that internally represent parts of the system registry (see
Section 4.3).

hivescan

Uses a signature-based approach to search for _CMHIVE
structures in memory. These data types internally rep-
resent parts of the system registry (see Section 4.3).

imageinfo

Displays various meta data about the image, including
the image type as well as the creation date and time.

kpcrscan

Scans a memory image for a _KPCR structure that defines
the Kernel Processor Control Region. With the help of
the structure, it is for instance possible to enumerate the
list of running processes on a machine (see Section 4.1).

modscan2

Scans a memory image for _LDR_DATA_TABLE_ENTRY ob-
jects that save the base address, size, and path of all
dynamically loaded libraries (DLLs) that are referenced
by a process (see Section 4.5).

procexedump

Creates an executable (.EXE) file of a process. While
the recovered file is unlikely to run due to changes in its
.data section, the binary can frequently be successfully
disassembled for further analysis and reveal malicious
activities (see Section 4.5).

Table continues on the following page.
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Module Name | Description

Follows the ActiveProcessLinks list that is part of the
pslist _EPROCESS block to enumerate running processes on the
system (see Section 4.1).

Applies a signature-based search algorithm to locate
_EPROCESS structures within a memory image and reveal
potential Direct Kernel Object Manipulation (DKOM)
attacks (see Section 4.1).

Generates a tree-like view of running system processes.
pstree The tree is derived from the output of the pslist com-
mand (see Section 4.1).

Enumerates the list of open registry keys that are refer-

psscan

regobjkeys enced by a process (see Section 4.3).
Finds the _AddrObjTable hash table in the tcpip.sys
driver file and follows the singly linked list of
sockets

_ADDRESS_0BJECT entries to enumerate listening sock-
ets on the target system (see Section 4.4).

Scans the non-paged pool of the operating system for
sockscan allocations that contain information about open network
sockets (see Section 4.4).

Traverses the Virtual Address Descriptor (VAD) tree of
vaddump a process and dumps the allocated memory segments to
a file (see Section 4.5).

Prints detailed information about a process’s Virtual
Address Descriptor (VAD) tree that contains the range
vadinfo of memory addresses that are allocated by the appli-
cation as well as references to loaded modules and
memory-mapped files (see Section 4.5).

Creates a graphical structure of a process’s Virtual Ad-
dress Descriptor (VAD) tree (see Section 4.5).

Table A.1: Integral Modules of the Volatility Memory Forensics Framework

vadtree
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